R/avgDensityBootstrap.R
avgDensityBootstrap.RdCompute bootstrap confidence intervals on the average squared density parameter
Compute bootstrap confidence intervals on the average squared density parameter
Output both the point estimate and the bootstrap confidence interval
TMLEbootstrap::generalBootstrap -> avgDensityBootstrap
Inherited methods
new()bootstrap average density parameter;
avgDensityBootstrap$new( x, epsilon_step = NULL, bin_width = 0.3, lambda_grid = NULL, M = NULL, targeting = TRUE )
xvector of random samples.
epsilon_stepstep size of the TMLE (one-step)
bin_widthbinning width for the density super learner
lambda_gridpre-specified grid of L1 penalization for the HAL
Malternative to "lambda_grid". Specify the max variation norm of the HAL
targetingbool. whether to perform targeting on the density estimator. If FALSE, the density super learner estimate will be returned
NULL
bootstrap_once()run one bootstrap sample
avgDensityBootstrap$bootstrap_once( self, data, epsilon_step = self$epsilon_step, population_x = self$x, population_tmle = self$pointTMLE, inflate_lambda = 1 )
selfself
datainput bootstrap data
epsilon_stepstep size of the TMLE (one-step)
population_xwhole training data
population_tmleTMLE on the whole training data
inflate_lambdaexperimental. scalar to scale the L1 penalty during the bootstrap
NULL
run_bootstrap()avgDensityBootstrap$run_bootstrap( n_bootstrap = 200, alpha = 0.05, kind = NULL, inflate_lambda = 1, to_parallel = FALSE )
clone()The objects of this class are cloneable with this method.
avgDensityBootstrap$clone(deep = FALSE)
deepWhether to make a deep clone.