All functions

ateBootstrap

Compute bootstrap confidence intervals on the ATE parameter

ateTMLE

Compute TMLE on the ATE parameter

ateTuneHyperparam

Use plateau method to choose the L1 penalty of HAL (ATE)

avgDensityBootstrap

Compute bootstrap confidence intervals on the average squared density parameter

avgDensityTMLE

onestep TMLE of average density parameter

avgDensityTuneHyperparam

Use plateau method to choose the L1 penalty of HAL (average squared density)

basic_fixed_HAL()

(Experimental) Super Learner wrapper for fixed HAL

blipVarContinuousYTuneHyperparam

Use plateau method to choose the L1 penalty of HAL (blip variance)

blipVarianceBootstrap

Bootstrap confidence intervals for the blip variance parameter (binary Y)

blipVarianceBootstrapContinuousY

Bootstrap confidence intervals for the blip variance parameter (continuous Y)

blipVarianceTMLE

Compute TMLE on the variance of CATE (binary Y)

blipVarianceTMLEContinuousY

Compute TMLE on the variance of CATE (continuous Y)

comprehensiveBootstrap

Run `generalBootstrap` twice (regular + second-order bootstrap)

cvDensityHAL

Fit a 1-d density using HAL regression; automatic tuning of L1 penalty

densityHAL

Fit a 1-d density using HAL regression

empiricalDensity

Store a 1-dimensional density function

fit_fixed_HAL()

fitting fixed_HAL. outputs an object of the fit use the old basis use the old lambda OPTIONAL: if the old object is squashed, only use the non-zero basis

generalBootstrap

Abstract class of bootstrap

grabPlateau

Grab a plateau of a function y = f(x)

longiData

Convert univariate series to longitudinal format

tuneHyperparam

Use plateau method to choose the L1 penalty of HAL (abstract class)