Constructor for class adaptmle

Value

class adaptmle object, sub-classed from SummarizedExperiment.

Examples

library(SummarizedExperiment)
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> Loading required package: parallel
#> #> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:parallel’: #> #> clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, #> clusterExport, clusterMap, parApply, parCapply, parLapply, #> parLapplyLB, parRapply, parSapply, parSapplyLB
#> The following object is masked from ‘package:adaptest’: #> #> var
#> The following objects are masked from ‘package:stats’: #> #> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’: #> #> anyDuplicated, append, as.data.frame, basename, cbind, colMeans, #> colnames, colSums, dirname, do.call, duplicated, eval, evalq, #> Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, #> lengths, Map, mapply, match, mget, order, paste, pmax, pmax.int, #> pmin, pmin.int, Position, rank, rbind, Reduce, rowMeans, rownames, #> rowSums, sapply, setdiff, sort, table, tapply, union, unique, #> unsplit, which, which.max, which.min
#> Loading required package: S4Vectors
#> #> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:base’: #> #> expand.grid
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor #> #> Vignettes contain introductory material; view with #> 'browseVignettes()'. To cite Bioconductor, see #> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#> Loading required package: DelayedArray
#> Loading required package: matrixStats
#> #> Attaching package: ‘matrixStats’
#> The following objects are masked from ‘package:Biobase’: #> #> anyMissing, rowMedians
#> Loading required package: BiocParallel
#> #> Attaching package: ‘DelayedArray’
#> The following objects are masked from ‘package:matrixStats’: #> #> colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
#> The following objects are masked from ‘package:base’: #> #> aperm, apply
library(airway) data(airway) example_adaptmle_class <- function(se, n_top = 20, n_fold = 10) { call <- match.call(expand.dots = TRUE) adaptmle <- .adaptmle( SummarizedExperiment::SummarizedExperiment( assays = SummarizedExperiment::assay(se), colData = SummarizedExperiment::colData(se) ), call = call, folds = list(), # folds (from origami) plot_ingredients = list(), # top_colname diff_exp = as.numeric(rep(NaN, n_top)), # DE p_value = as.numeric(rep(NaN, n_top)), # p_value q_value = as.numeric(rep(NaN, n_top)), # q_value q_sig = as.numeric(rep(NaN, n_top)), # significant_q q_sig_names = list(), # top_colname_significant_q rank_mean = as.numeric(rep(NaN, n_top * n_fold)), # mean_rank_top prob_top = as.numeric(rep(NaN, n_top * n_fold)), # prob_in_top top_index = as.numeric(rep(NaN, n_top * n_fold)) # top_index ) return(adaptmle) } example_class <- example_adaptmle_class(se = airway)